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Abstract This paper investigates the patient risk prediction problem in the context of
active learning with relative similarities. Active learning has been extensively studied
and successfully applied to solve real problems. The typical setting of active learning
methods is to query absolute questions. In a medical application where the goal is to
predict the risk of patients on certain disease using Electronic Health Records (EHR),
the absolute questions take the form of “Will this patient suffer from Alzheimer’s later
in his/her life?”, or “Are these two patients similar or not?”. Due to the excessive
requirements of domain knowledge, such absolute questions are usually difficult to
answer, even for experienced medical experts. In addition, the performance of absolute
question focused active learning methods is less stable, since incorrect answers often
occur which can be detrimental to the risk prediction model. In this paper, alterna-
tively, we focus on designing relative questions that can be easily answered by domain
experts. The proposed relative queries take the form of “Is patient A or patient B more
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similar to patient C?”, which can be answered by medical experts with more confi-
dence. These questions poll relative information as opposed to absolute information,
and even can be answered by non-experts in some cases. In this paper we propose
an interactive patient risk prediction method, which actively queries medical experts
with the relative similarity of patients. We explore our method on both benchmark and
real clinic datasets, and make several interesting discoveries including that querying
relative similarities is effective in patient risk prediction, and sometimes can even yield
better prediction accuracy than asking for absolute questions.

Keywords Patient risk prediction · Patient similarity · Active learning · Relative
query · Reconstruction error · Counting set cover

1 Introduction

1.1 Background and motivation

The key idea of active learning is that a machine learning algorithm can achieve higher
accuracy with fewer training labels if it is allowed to choose the data from which it
learns. Active learning extends machine learning by allowing learning algorithms to
typically query the labels from an oracle for currently unlabeled instances. Though
enormous progress has been made in the active learning field in recent years (Zhuang et
al. 2012), traditional active learning assumes that the questions prompted by a machine
can be confidently answered by human experts, which may not be the case in many real
world applications. This is particularly true in the domains that require proficient exper-
tise to provide labels, such as medical informatics. The purpose of this work, Active
patient Risk Prediction (ARP), is to explore easier active learning for medical data, so
as to address the dilemma when doctors cannot confidently provide absolute labels.

Asking easier questions can effectively reduce the time and cost when applying
active learning techniques to real world problems. For example, in medical informat-
ics, patient similarity evaluation is an enabling technique for many research studies,
such as risk stratification (i.e., grouping patients according to their disease condition
risk), comparative effectiveness research, and predictive modeling. However, even for
an experienced doctor, it is generally difficult to provide absolute labels in medical
scenarios. For instance, it is difficult to judge whether two patients are exactly similar
or not, since patients with the same disease may suffer from different comorbidities;
but it is much easier to ask for relative comparison questions, such as Is patient B more
similar to patient A than patient C?

To illustrate the advantage of using relative questions in medical applications, let
us consider a simple example in a patient risk prediction problem as shown in Fig. 1.
Consider the setting in Fig. 1a, where the query is an absolute question, it is difficult to
tell whether the patient will suffer from the Alzheimer’s later in his/her life based the
MRI (Magnetic resonance imaging) scan, since the Alzheimer’s cannot be predicted
reliably even for experienced brain specialists. Consider the setting in Fig. 1b, which
is another type of absolute question, it is also difficult to provide a binary answer that
the two brains are similar or not, since similarity itself is a relative concept which may

123



Interactive patient risk prediction

(a)

(b)

(c)
Fig. 1 Examples of absolute and relative queries on MRI images. a An absolute query: will this patient
suffer from Alzheimer’s later in his/her life? b An absolute query: are Patient 1 and Patient 2 similar or not?
c A relative query: is Patient 2 or Patient 3 more similar to Patient 1?

not be answered independently with others. Now let us consider the setting in Fig. 1c,
which shows an example of relative questions, it is significantly easier to provide a
relative similarity amongst the three MRI scans, even a non-expert can answer the
question by visually examining the three scans. The purpose of this work is to explore
patient risk prediction in such context, i.e., when absolute questions are difficult to
query and obtain. We propose to query relative information, rather than asking for
exact labels, to better understand the neighborhood structure of instances.

1.2 Problem setting

In this work we explore active learning with relative questions in the context of the
popular label propagation type of algorithms, such as GFHF (Zhu et al. 2003a) and
LGC (Zhou et al. 2003). In this class of algorithms each instance (patient) is viewed as
a node on a graph and has a weighted neighbor set (containing similar patients) which
are collectively used to propagate labels from labeled instances to the unlabeled ones.
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Therefore, the neighborhood structure (which instances are neighbors of each other
and how to evaluate the similarity amongst themselves) is important to the performance
of these algorithms since this determines where the labels are propagated to and how
labels are propagated. In our formulation the neighborhood structure is learned by
minimizing the reconstruction error of writing a data point as a weighted linear com-
bination of its nearest neighbors. The given labels are then propagated to the unlabeled
locations which are then further propagated and so on for an infinite number of steps.

1.3 Proposal

A key step of active patient risk prediction is to select informative queries, by answering
which the prediction model is improved maximally. Our query selection strategy is,
rather than asking for absolute questions such as labels, to ask humans to place ordering
(possibly partial ordering) on the relative similarity of the neighbors to the instance
that they are neighbors of. Specifically, a machine prompts a patient along with the
patients who are similar to his/her (nearest neighbors), and then a medical expert is
asked to sort or partially sort (from the most similar one to the least similar one) the
neighboring patients according to the relative similarity to the patient that they are
neighbors of. Since our active learning scheme is performed on neighbor sets rather
than instances, we focus on selecting the most informative neighbor sets which we
cast as a counting set cover problem. Counting set cover is an efficient combinatorial
algorithm to perform entity ranking/selection, by using which we aim to locate the
instance whose neighborhood is most influential to the graph structure. The proposed
query scheme selects the most informative neighborhood to query, and the advice
from human experts are enforced as constraints in the subsequent updating of the
neighborhood structure, which are later used to help better propagate labels on the
graph with the process being repeated. It is important to note that in our method
there is no additional absolute labels that are added to the training data, rather the
neighborhood weights are better estimated under the guidance from human experts.

The main advantage of querying neighborhood structure/weights is that the rela-
tive questions are easier to answer for medical experts. This is particularly useful to
active learning in many specialized domains where the absolute questions are diffi-
cult to answer even for people with proficient domain knowledge, such as predicting
a person’s mental health condition based on the brain MRI scans, and inferring the
patients’ diseases based on the EHRs, which are the two real applications we shall
focus on in this paper. The proposed method is appropriate to any data that can be
cognitively understood by humans, such as MRI images which are visible to humans,
and EHRs which are interpretable to humans. The majority of real data fits into this
category, therefore, our method is applicable to most active learning applications. The
proposed algorithm is computationally efficient and can be easily parallelized as dis-
cussed later. The promising experiment result demonstrates the effectiveness of the
proposed approach, and validates our idea of querying relative similarities (neighbor-
hood structure). In addition, our result indicates that sometimes querying neighborhood
orderings can even achieve higher learning accuracy than using the same number of
queries of labels.
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1.4 Contribution

Our work makes the following technical contributions.

– We investigate a new form of knowledge injection (relative similarities rather than
absolute labels) to active patient risk prediction.

– The proposed method can query both labeled and unlabeled patients.
– Our method is scalable to large medical problems since it divides a problem into

a series of small problems each of which can be solved independently.
– We empirically show that the relative similarity can be a legitimate knowledge

source (instead of absolute similarity or labels) in our method.

The rest of this paper are organized as follows. We begin our paper with a discussion
of related studies in Sect. 2. We then present the details of the proposed method in
Sect. 3, including the risk prediction model, problem formulations of the constrained
neighborhood structure learning, query (neighborhood) selection strategy, and imple-
mentation issues. Our experiment in Sect. 4 explores the proposed method on a few
benchmark datasets and real problems. We finally conclude our work in Sect. 5.

2 Related work

Our work is is broadly related to active learning and its applications, we shall now
briefly review some previous studies. According to a recent survey on active learn-
ing (Settles 2009), existing active learning algorithms can be summarized into six
categories based on the objective of the query selection.

Uncertainty sampling queries the instance about whose label the learning model
is least confident (Lewis and Gale 1994; Culotta and McCallum 2005; Qian et al.
2013b) while Query by committee queries the instance about whose label the committee
members (classifiers) most disagree (Muslea et al. 2000; Melville and Mooney 2004).
The Expected model change query focus is on the instance that would impart the
greatest change to the learning model (Settles et al. 2008). The Expected risk Reduction
approach queries the instance which would minimize the expected future classification
risk (Roy and Mccallum 2001; Guo and Greiner 2007; Kapoor et al. 2007) whilst the
Variance Reduction query strategy chooses the instance which would minimize the
output variance such that the future generalization error can be minimized (Zhang and
Oles 2000). Finally Density weighted method query the instance which is not only
uncertain but also representative of the underlying distribution of data (Settles and
Craven 2008; Qian et al. 2013a; Cebron and Berthold 2009). However, all of them are
label focused and hence are not directly comparable to our work. Existing approaches
of active learning only focus on one aspect of active learning—the query strategy, and
the other aspect of active learning—the design of questions—is not addressed.

A new direction in active learning is batch mode active learning (Hoi et al. 2006;
Chattopadhyay et al. 2012) which asks the oracle a set of labels instead of a single label
at a time. Although this is a more efficient querying method, it still requires the human
experts to provide labels of a batch of instances and does not make the question itself
mode efficient or easier. A novel direction proposed by Rashidi and Cook (2011) is a
method that aggregates multiple instances into a generic active learning query based on
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rule induction, and has been empirically demonstrated to perform more effective and
efficient than querying labels. However, since it is a rule-based learning algorithm, its
usefulness is limited to the cases that the data is represented in a low dimensional space
and every feature has to be interpretable. Additionally, though a generic question it is
still an absolute question as it requires human experts to have even stronger background
knowledge than just querying labels. In contrast, we focused on designing a relative
active learning query which could be answered by people without domain knowledge.

The only active learning work to our knowledge that queries pairwise relations is in
the spectral clustering literature (Wauthier et al. 2012). This work presents an active
spectral clustering algorithm that queries pairwise similarity, our work differs to this
not only in learning setting (semi-supervised versus unsupervised) but also since we do
not require the users to provide a real-valued pairwise similarity as they do rather just
some orderings of the instances in a neighborhood set. Lately, researchers have been
looking at applying data mining techniques to medical applications, such as patient
similarity learning (Sun et al. 2012; Wang et al. 2012), patient risk prediction (Zhou
et al. 2013; Davis et al. 2010), and patient pattern discovery (Norén et al. 2010; Wang
et al. 2013). In addition, active learning has been successfully applied to EHRs data
by Chen et al. (2013), in which there is an underlying assumption that human experts
(doctors) can confidently answer the questions raised by machines. However, this may
not be the case in many applications such as patient risk prediction where the target
value (risk) is too difficult to query of. Ipeirotis et al. (2014) tried to address the noisy
labeling issue in active learning by tolerating mistakes/errors provided by humans,
but it does not cover the scenarios where the questions prompted by a machine is too
difficult to answer even for a human with proficient domain knowledge. To address
this scenario, our work focuses on developing easier active learning for patient risk
prediction, where the major objective is to prompt answerable questions for human
experts.

3 The ARP method

We in this section outline the proposed method of active patient risk prediction start-
ing from describing the problem settings and notations. We then later in this section
propose the risk prediction model with pairwise constraints (to enforce relative simi-
larities), and the query selection strategy to identify the informative groups of patients
to query of.

3.1 Preliminaries

3.1.1 Overview

Figure 2 shows the basic components and work flow of our proposed approach, which
we refer to in this paper as Active patient Risk Prediction (ARP). In the first step, the
ARP model takes the EHR data (possibly other types of medical data), and learns a
prediction model, which will be later used to estimate the risk of a patient that will suffer
from a particular disease. Then, the query selection strategy identifies an informative
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Fig. 2 The cycle of active patient risk prediction (ARP) model

group of patients (a set of neighboring patients) by solving a weighted counting set
cover problem. In the next step of the ARP cycle, the medical experts are asked to
provide the relative similarities (an ordering or partial ordering) to the identified group
of patients based on the similarity to the patient that they are neighbors of. The provided
relative similarity (neighborhood ordering) information will be enforced as pairwise
constraints to update the risk prediction model. The process repeats until a desirable
prediction accuracy is achieved.

3.1.2 Problem settings and notations

Formally, the problem being addressed in this work is described as follows. Given a set
of n patients (instances) P = {p1, p2, . . . , pn}, we define a classification problem on
a set of m possible diseases (labels). A small portion of the n patients were periodically
examined, who are viewed as labeled instances, since we know what diseases they
eventually have. Let a binary matrix B (B ∈ R

n×m) carry the given labels (diseases),
where bi j = 1 iff patient pi suffers from disease j , and bi j = 0 otherwise. Let Gpi

denote a small group of patients (neighbor set) which consists of the patients that
are similar (nearest neighbors) to patient pi . Note that for different patients the size
of the neighbor set may differ. We then construct a graph of patients, which is fully
defined by a patient similarity matrix S (sparse), where an entry Si j = 1 if patient i
and j are exactly the same, and Si j = 0 if patient i and j are not similar. The relative
similarities provided by medical experts are enforced to the learning of the patient
similarity matrix S, such that a better patient similarity can be learned from human
feedback, which in turns would produce a better estimate of patient risks. Note that we
in our study do not require the notion of similarity defined in S to be symmetric, i.e.,
Si j �= S ji is possible and allowed. This paper will often refer to row or column vectors
of matrices, for instance, i-th row and j-th column vectors of the matrix S are denoted
as Si · and S· j , respectively. The proposed ARP approach iterates between the learning
of the patient similarity matrix S—updating a row of S in each iteration based on the
relative similarities provided by medical experts, and the query selection—identify
the most informative group of neighboring patients by ordering which the accuracy
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of estimated risks would be significantly improved. In particular, our risk prediction
model is built upon the linear neighborhood propagation algorithm (LNP) proposed
by Wang and Zhang (2006), which learns the graph similarity matrix S by solving the
reconstruction error as a quadratic program (QP) to guarantee the non-negativity of
similarity. We shall next briefly review the LNP method, and then propose our pairwise
constraints to incorporate the human feedbacks.

3.2 Background—linear neighborhood propagation

3.2.1 Learning of patient similarity

To present our work in a clear context, we now briefly review the reconstruction
error and the Linear Neighborhood Propagation (LNP) framework, based on which
we shall later in this section present the ARP approach. As introduced by Roweis and
Saul (2000), the reconstruction error is defined as:

Q(S) =
n∑

i=1

‖pi −
∑

p j ∈Gpi

Si j p j‖2 (1)

The reconstruction weight (patient similarity matrix) S is typically solved as a
constrained least square problem or a linear system of equations, however, Wang and
Zhang (2006) have shown that it also can be solved as a quadratic program (QP).
The advantage of using a QP formulation is that additional constraints (such as non-
negativity) can be added in, and thereby makes the formulation more flexible. Let Li

denote the local covariance matrix of patient pi (the term “local” refers to the fact that
the patient is used as the mean in the calculation of covariance), formally the definition
of Li can be expressed as Li = (1pi − Gpi )(1pi − Gpi )

T , where 1 denotes a column
vector consisting of ones. Using the local covariance matrix, the reconstruction error
problem can be reformulated to a series of small QP problems (one for each patient),
since each row of S is independent of every other. Formally, a row vector Si · (the
weights used to reconstruct patient pi using its neighbors) in the similarity matrix S
can be solved as a QP problem as follows:

min
Si ·

Si ·Li ST
i · (2)

s.t. Si ·1 = 1;
Si j � 0, ∀ j ∈ {1, 2, . . . , n}.

3.3 Learning of patient similarity with relative constraints

Instead of querying absolute questions, such as “will this patient suffer from a dis-
ease?” or “are the two patients similar or not?”, our approach queries the relative
similarities (neighborhood structure) amongst patients to improve the graph structure,
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Fig. 3 An examplar query to doctors on strutural MRI data: to (partially) order the neighboring patients
based on their realtive similarities to the query patient

which in turns will improve the performance of patient risk prediction. In each query-
ing iteration, a doctor will be asked to order the neighbors of an patient in descending
order based on their similarities. It is possible that sometimes a doctor may not be
able to provide a complete ordering to a neighborhood, if this is the case the doc-
tor can only provide a partial ordering, which still helps to constrain the learning of
patient similarities. An exemplar relative query on structural MRI data is shown in
Fig. 3. We see that even people without medical background can sometimes provide
neighborhood orderings based on the visually observed similarities between patients.
This implies that the benefit of the proposed ARP approach comes from that humans’
visual perception being able to better understand the content of objects than can be
calculated from the data.

The “unconstrained” version of patient similarity can be learned using Eq. (2).
We now show how to encode the relative similarities (neighborhood ordering) to the
formulation, such that the feedback from humans can be incorporated to the similarity
matrix of patients. The QP formulation of the reconstruction error in Eq. (2) allows
us to encode the neighborhood orderings as a set of linear constraints to the patient
similarity matrix S. Let us take a simplified example to show the enforcement of
relative similarities on a group of just three patients (the minimum number of patients
for a relative similarity): given that a patient pi has two neighboring (similar) patients
pa and pb, and patient pa is more similar to patient pi than pb is; we then can claim
that the weight of pa used to reconstruct pi should be greater than that of pb, i.e., we
have Sia � Sib. This relative similarity can be encoded to the QP formulation using
the linear constraint as shown below.

min
Si ·

Si ·Li ST
i · (3)

s.t. Si ·(ea − eb) � 0;
Si ·1 = 1;
Si j � 0, ∀ j ∈ {1, 2, . . . , n}.

where ea is a single-entry column vector with the a-th entry being one and all other
entries being zeros. With the transitivity of inequality, we can enforce a complete
ordering on a group of neighboring patients using a set of concatenating constraints.
For example, if we require that patient pa , pb and pc are decreasingly similar to patient
pi , i.e., in terms of patient similarity we have Sia � Sib � Sic. This ordering can be
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enforced using two concatenating constraints, i.e., Si ·(ea − eb) � 0 and Si ·(eb − ec)

� 0.

3.4 Query selection of patient neighborhood

With the QP formulation shown in Eq. (3), we can learn the patient similarity matrix S
under the guidance of the relative similarities provided by medical experts. Then the
next question to address in our study is to select informative patient neighborhoods,
which will be prompted to human experts as queries.

We begin this section with the overview of the intuition behind the proposed method
and then providing full details for the reproducibility of our experimental results. Our
work deviates from existing active learning methods by querying not the risk of a
patient or the absolute similarity between two patients, rather querying the neigh-
borhood structure of patients. Hence, our query strategy aims to choose the patient
neighborhood which if queried (sorted by human experts) will have the most significant
impact in terms of better propagating the risk of diseases on the patient graph. Since
each neighbor set of patients naturally forms a subset of the n patients, we propose to
use counting set cover to estimate the importance of a patient neighborhood. Benefits
of using counting set cover include (i) neighbor sets that are essential to maintain the
graph structure can be naturally found through solving a set cover problem, and (ii)
counting with different weighting schemes would emphasize different notions of the
importance of graph structure, which enriches the flexibility of active neighborhood
selection.

Before we present the details of counting set cover, we first briefly review the set
cover problem and its efficient approximation. Recall a set cover problem consists of
two parts: (1) a universe which in our case is the patient set P containing all the n
patients, and (2) a set of subsets of P which in our case is the n patient neighbor sets
that correspond to the n patients, i.e., G = {Gp1 ,Gp2 , . . . ,Gpn }. We say a subset GS
of G (GS ⊂ G) is a cover of the universe P if every patient in P appears at least once
in GS . In other words, the union of the subsets in GS is the universe, i.e., ∪ GSi = P .
A cover GS that has minimum (possibly weighted) cardinality is called a minimum
set cover. The set cover problem, which aims to identify such a minimum cover, can
be formulated as the following integer program.

min
n∑

i=1

Ci (4)

s.t.
n∑

j=1

βi jC j ≥ 1, ∀ pi ∈ P

Ci ∈ {0, 1}.

where Ci is the indicator of the subset Gpi (the neighborhood of patient pi ), which is
set to 1 iff the neighborhood Gpi is part of the minimum set cover, and 0 otherwise.
βi j indicates whether the patient pi exists in the neighborhood Gp j (the neighborhood
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of patient p j ), i.e., βi j = 1 if pi ∈ Gp j and βi j = 0 otherwise. The first constraint in
Eq. (4) is to guarantee that every patient in P is covered at least once in the solution,
and the second constraint is to enforce the set cover indicator to be binary, i.e., Ci is
either 0 or 1.

The set cover is a well studied NP-hard problem. In our work we adopt the following
greedy approximation algorithm to solve the set cover problem: in each step, choose
the subset Gpi that contains the most uncovered patients; Repeat this process until
all patients are covered. This simple greedy approach finds a set cover with at most
c∗logen sets, where an optimal solution contained c∗ sets. With random initializations
this method produces multiple close to minimum set covers. This allows us to count
the number of solutions that each patient neighborhood Gpi participates in, and make
the estimation of each neighborhood’s significance easier. Let Q(Gpi ) denote the sig-
nificance of patient pi ’s neighborhood to maintain the graph structure. Formally, we
can write the Q(Gpi ) as a weighted counting set cover problem shown as follows:

Q(Gpi ) =
∑

z j ∈Z
γ (Gpi , z j )w(Gpi ) (5)

where z j denotes a close to minimum set cover solution, and Z denotes the collection
of the multiple close to minimum set covers. γ (Gpi , z j ) indicates whether the neigh-
borhood Gpi is part of the (close to minimum) set cover z j . Formally, γ (Gpi , z j ) = 1
if Gpi ∈ z j , and γ (Gpi , z j ) = 0 otherwise. w(Gpi ) is the counting weight of patient
neighborhood Gpi , which also can be viewed as defining the querying preference of
patient neighborhoods. We in our study consider the following two weighting schemes:

– Uniform: w(Gpi ) = 1, ∀ Gpi ∈ G. A baseline weighting scheme that assigns a
uniform weight to all patient neighborhoods. The underlying assumption of this
weighing scheme is that all patient neighborhoods are equally important in the
counting, therefore, from the weighting perspective they are equal likely to be
selected.

– Connectivity: w(Gpi ) = ∑n
j=1 S ji . In plain words, the counting weight of a neigh-

borhood Gpi is proportional to the frequency that the members of Gpi are used to
reconstruct others. This weighting scheme is node (patient) connectivity based,
which assigns higher weights to the patient neighborhoods that are located in the
“dense” area of the patient similarity matrix S. That is where the learning algo-
rithm is more liked to be confused. This implies that the weighting scheme prefers
to query the patient neighborhoods that are highly connected to others, includ-
ing both within and outside the neighborhood, since they are more influential in
maintaining the key structure of the patient graph.

Once an informative patient neighborhood is identified by the counting set cover
strategy, a medical expert will be asked to sort the neighbors in descending order with
respect to the similarity to the query patient that they are neighbors of. The relative
similarities obtained from human experts will be later incorporated to the learning of
the patient similarity matrix S, which in turns would improve the prediction accuracy
of patient risks. This process repeats until a desirable prediction accuracy is achieved,
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or some stopping criterion is satisfied. Note that since the learning of one row Si · in
the matrix S is independent of other rows, each feedback (query) from human experts
would only change a single row in S. This shows another advantage of the proposed
method on active patient risk prediction: there is no need to updated the entire model
in each querying iteration.

3.5 Risk estimation

After the active learning of patient similarity matrix S, we can perform patient risk
prediction using graph diffusion methods. In particular, we propagate the given risks
of diseases on the patient graph using the similarity matrix S. In our method, each
row of the patient similarity matrix S sums to one, thereby S can be readily used as
the transition matrix and perform a random walk on the graph to infer patient risks.
In each risk propagation iteration, the state (i.e. the risks of diseases) of each patient
is partially (with a rate of λ) adjusted by risk values that flow on the graph, but still
preserves a portion (with a rate of 1 − λ) of the given true risks. Let R denote the
predicted patient risk and B denote the given true risk, the state (risk) of patients at
time t + 1 can be inferred from the previous state of patients at time t .

Rt+1 = λS Rt + (1 − λ)B (6)

Let R∞ denote the patient state (risk) after infinite random walk steps, the state of
patients eventually converges to a steady-state probability as follows.

R∞ = (1 − λ)(I − λS)−1 B (7)

where I denote the identity matrix. Note that the value of (1 − λ) can be interpreted
as the probability of the restart (jump back to the initial state) in a random walk. The
restart is a necessary step in the risk propagation process, otherwise the problem would
reduce to a global solution, which is equivalent to the result of PageRank. (1−λ) also
can be viewed as the constant to penalize the changes to the initial risks. In practice,
if the given risk B is relatively more complete (B is a dense matrix), we should set a
smaller value for λ. On the contrary, the value of λ should be larger if the given risk
B is relatively less complete (B is a sparse matrix) or contains considerable amount
of noise.

3.6 Implementation

The proposed method mainly aims to perform effective patient risk prediction by
asking medical experts answerable or easier questions. The ARP algorithm is sum-
marized in Table 1. Since our method may query on both patients with given risks
and patients without given risks, it is possible that our approach may choose to query
the same patient neighborhood repeatedly. In practice, this issue can be solved by
simply enforcing that each patient neighborhood only can be queried once. If the spar-
sity is introduced to the patient similarity matrix S, such as using k-nearest neighbor,
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Table 1 The ARP Algorithm

the proposed algorithm would be computationally efficient and applicable to large
scale problems, since (i) the QP learning of patient similarity can be efficiently solved
and (ii) only a single row in S needs to be updated after each feedback from human
experts.

In order to reduce the human efforts of ordering a patient neighborhood and avoid
excessive patient risk propagation, the number of neighbors of a patient needs to
be limited to a small value. In our implementation, we discard the neighbors whose
weights in Si · are under a certain threshold (0.01 in our experiment). The QP formula-
tion defined in Eq. (2) is a standard problem, thereby can be solved using any standard
QP solvers. We in our experiment used the build-in QP solver of Matlab.

In addition, the proposed ARP method can be easily scaled in a number of ways.

– One may employ kd-trees (Panigrahy 2008) or locality sensitive hashing (Gionis
et al. 1999) techniques to efficiently construct the patient neighborhoods G.

– The learning of patient similarity S defined in Eq. (2) can be easily parallelized,
since the weights to reconstruct each patient using their neighbors are solved
independently of the weights that are used to reconstruct other patients.

– The patient risk propagation defined in Eqs. (6) or (7) also can be parallelized as
the matrix manipulation can be parallelized.

– To accelerate the selection of informative patient neighborhoods, one may use
more efficient counting set cover algorithms such as compressed-IC (Gionis et al.
2012).

4 Empirical evaluation

We in this section attempt to understand the strengths and relative performance of the
proposed approach ARP. As discussed in Sect. 3.4, there are two versions of ARP
that are evaluated in our experiment: (i) ARP-Uniform which counts the set covers
using the uniform weighting scheme, and (ii) ARP-Connectivity which counts
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set covers using the connectivity weighting scheme. In particular we wish to answer
how well our method compares to the following baseline methods:

1. Random+Risk A baseline with the setting as follows, (i) the patient similarity
matrix S is learned using Eq. (3) with relative feedback, (ii) the selection of patient
neighborhood to query is random, (iii) the patient risk is inferred using Eq. (7).
This baseline has the same learning settings as our ARP method but selecting
random neighborhood to query. We chose this as a baseline to demonstrate that
the counting set cover scheme presented in Eq. (5) significantly outperforms the
random selection of neighborhoods.

2. Active Harmonic Function A state-of-the-art active graph propagation
method proposed by Zhu et al. (2003b). In our case this method queries human
experts with the patient risks, not the relative similarity. We chose this as a baseline
to evaluate how well our ARP method compares to traditional label focused active
learning methods.

The surprising answer is that the proposed ARP method performs comparably as
typical label focused active learning despite not adding more labels (patient risks in our
experiment) rather just improving neighborhood structure. Given this, an interesting
question is, “Is the good performance of ARPmethod due to the query selection scheme
or the learning technique of patient similarity?”. To investigate this we compare the
ARP method with the following two additional baseline methods:

3. Active+RiskA baseline method that is exactly the same as the ARP, but query-
ing human experts with the patient risks rather than the relative similarities of
patients, i.e., asks for the risk of patient pi rather than the order of Gpi . In this
method, the set covers are counted using the connectivity weighting scheme. We
chose this as a baseline to compare, under our query selection scheme, the strengths
between risk values and relative similarities in active patient risk prediction.

4. Random+RelativeA baseline methods that is exactly the same as the ARP, but
randomly selecting patient neighborhood to query, i.e., replace the counting set
cover scheme with a random selector. We chose this as a baseline to evaluate the
performance of our patient similarity learning method on a bad (random) query
selection scheme.

We compare the performance of the above six methods (including the four baseline
methods and the two versions of ARP) on three sets of real data.

– Benchmark data Breast Cancer and Diabetes from UCI machine learning reposi-
tory (Asuncion and Newman 2007), both of which are extensively tested and have
shown to be useful in the evaluation of learning methods.

– Structural MRI data We evaluate our method on a collection of the brain structural
MRI scans of over 1,000 real patients, who were routinely clinically examined for
years so that we know whether they have the Alzheimer’s disease eventually. The
task here is to predict the risk of each patient that will suffer from the Alzheimer’s
disease later in their life.

– EHR data We used a EHR dataset extracted from a real-world warehouse which
consists of the records of 319,650 patients over 4 years. We selected Congestive
Heart Failure (CHF) patients as a study case and predicted their risk of CHF onset.
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There are two main parameters used in the six methods, i.e. the σ in Active
Harmonic Function and the λ in ARP, both of which are selected using cross-
validation. To reduce the number of patients in a neighborhood, we in theARP approach
discard the neighbors with a weight less than 0.01, in the Active Harmonic
Function use k-nearest neighbors method when constructing the patient similarity
graph (k is usually 7–15 depending on the data).

Since the questions queried in our model is the relative similarity of patients rather
than the risk/label, it is possible (but unlikely in practice) that a neighborhood ordering
provided by a medical expert does not make changes to the patient similarity graph. In
other words, it is possible that in an active learning iteration our ARP learning model
gains nothing and remains the same. To evaluate this, we define a measure called
hit-rate, which refers to the fraction of times that the queried neighborhood orderings
changed the patient similarity graph. The hit-rate indicates the success of the relative
queries in terms of changing the patient risk prediction model. In particular, a low
hit-rate implies querying the relative similarity of patients did not bring much new
information to the risk prediction model, while a 100 % hit-rate indicates that every
queried patient neighborhood made some changes to the risk prediction model. There
are two evaluation measures used in our experiment.

– Error rate the rate of mis-predicted patients, which measures the accuracy of
patient risk prediction models.

– Hit-rate the fraction of times that the feedbacks from medical experts made changes
to the risk prediction model, which measures the efficacy of the active scheme of
our ARP method.

4.1 Experiment 1—Benchmark datasets

4.1.1 Dataset and experiment settings

We first evaluate the proposed ARP method on two benchmark medical datasets from
UCI repository, i.e., Breast Cancer and Diabetes. The Breast Cancer dataset contains
569 patients that are represented using 30-dimensional data vectors, which are com-
puted from a digitized image of a fine needle aspirate (FNA) of a breast mass. The
features describe the characteristics of the cell nuclei presented in the images. All
the patients are categorized as either malignant (positive) or benign (negative). The
Diabetes datasets consists of 768 patients, who are all females of Pima Indian heritage
and at least 21 years old. Each patient is represented by a 8-dimensional data vector,
and are categorized as either diabetic patient (positive) or normal patient (negative).
In this experiment, the learning task is to predict the risk of a patient that suffers
from breast cancer or diabetes. Performing active learning on the two data is difficult,
since the labeling of patients based on the medical measurements requires extensive
medical experience. However, it would be easier to ask for the ordering of patient in a
neighborhood, which requires less medical knowledge compared to absolutely saying
that a patient is normal or sick. For the reproducibility of our experimental result, we
use the labels of patients to generate relative similarities. In particular, given a query
patient and the corresponding neighborhood, we enforce the neighboring patients with
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the same label as the query patient to be more similar to the query patient than the
patients with a different label, but do not enforce ordering amongst the patients with
the same label. In each active learning iteration, we only enforce a partial ordering
to the learning of patient similarity, which is weaker than a complete ordering of
neighborhood.

4.1.2 Results and discussion

For both Breast Cancer and Diabetes datasets, in each trial, we randomly and equally
divide the patients into four groups. One group is used for training and the rest patients
are used for test, and we do a rotation of the training group among the four groups of
patients. For each training set, 30 additional labels or relative similarities (depends on
the methods) of patients are added to the training set step by step, which are used to
show the accuracy improvement of patient risk prediction along with the increase of
active queries. The experiments are repeated for 100 times, and the mean error rates
with the standard deviations are reported in Fig. 4, where the result on Breast Cancer
dataset is shown in Fig. 4a and Diabetes dataset is shown in Fig. 4b.

In the result, we see that the two random querying methods Random+Risk and
Random+Relative are not much helpful to the learning accuracy. Especially on
the Breast Cancer dataset, the error rate keeps flat during the 30 queries of labels
or relative similarities. This confirms the motivation and necessity of active learn-
ing scheme since asking randomly selected questions may not effectively improve
the performance of patient risk prediction. Among the four active querying meth-
ods, the overall best accuracy is achieved by Active Harmonic Function and
Active+Riskmethods, which implies that querying patient labels provides stronger
knowledge to the prediction model than the relative similarity does. However, it can
be seen that our ARP-Connectivity methods achieves comparable (sometimes
even better) prediction accuracy with the methods without adding more labels, which
confirms our motivations that asking easier questions (relative similarities) can also

Fig. 4 Performance evaluation on UCI benchmarks (standard deviation is marked by shade). a Error rate
on breast cancer, b error rate on diabetes
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Table 2 Hit-rate comparison on
the two UCI benchmarks

Dataset name Hit-rate of ARP Hit-rate of random query

Breast cancer 100 % 87.03 %

Diabetes 100 % 88.67 %

efficiently improve the performance of risk prediction. In addition, we can see in
the result of Diabetes dataset that our ARP-Connectivity method sometimes
outperforms the two active methods that query labels, and Random+Relative out-
performs Random+Risk. This shows that the proposed ARP method is more noise
resistant, since label is a stronger type of supervision than relative similarity, and thus
the label of a noisy data vector would be more destructive to the prediction model.
For the two weighting schemes used in counting set cover, the connectivity weight
significantly outperforms the uniform one, since by using the former weight the graph
structure is factored into the counting.

The hit-rate comparison on the two UCI benchmark datasets are reported in Table 2.
We see that the hit-rate of the ARP method is always 100 %, which implies that the
patient neighborhoods selected our ARP method are more likely to be improvable.
Since the randomly selected neighborhoods are not noticeably helpful in the updating
of patient similarity matrix S, the usefulness of our patient neighborhood selection
scheme is validated.

4.2 Experiment 2—prediction of Alzheimer’s disease

4.2.1 Dataset and experiment settings

The structural MRI dataset consists of 1,005 patients, and the raw scans were collected
from real clinic cases. An example of the 3D MRI images used in our experiment is
shown in Fig. 5a. This is a new dataset and will be made publicly available. There
are two types of MRI scans that were collected from the subjects. (1) FLAIR: Fluid
attenuated inversion recovery is a pulse sequence used in MRI, which carries the white
matter hyper-intensity of a brain. (2) GRAY : Gray MRI images which only reveals the
activities in the gray matter of a brain. Figure 5b shows the region of white matter.
The MRI raw scans are in 3D, and each voxel has a value from 0 to 1, where 1
indicates that the structural integrity of the axon tracts at that location is perfect, while
0 implies either there are no axon tracts or the tracts are shot (not working). The raw
scans are preprocessed (including normalization, denoising and alignment) and then
restructured to 3D matrices with a size of 134 × 102 × 134. To further reduce the
dimension of data, we divide the brain into a set of biological regions (104 for white
matter and 46 for gray matter, such as Hippocampal, Cerebellum, Brodmann, Fornix,
· · · ), and take the mean value of each region to represent the entire region. This is a
common data preprocessing procedure for brain images in neuroscience. The white
and gray matter regions (marked by blue) are shown in Fig. 5b and c, respectively.

When the MRI scans of patients were collected, their cognitive function scores
(including semantic, episodic, executive and spatial, which range between −2.8258
and 2.5123) were also periodically acquired using a cognitive functioning test. The
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Fig. 5 Examples of structural MRI image. a 3D MRI scan, b white mater, c gray matter

Fig. 6 The user interface for medical experts to input relative similarities

cognitive scores indicate the mental health condition of patients, and are used as the
evidence to infer if a patient has the Alzheimer’s disease or not. Since the 1,005
patients in the dataset were routinely periodically examined, we know whether they
eventually suffer from Alzheimer’s disease. This is used as the ground truth in our
experiment. The risk prediction problem on this dataset is to determine if a patient will
be normal, mildly cognitively impaired (MCI), or dementia later in their life based
on their current brain images. Inferring the occurrence of Alzheimer’s disease based
on MRI scans is a difficult task, even for experienced brain specialists. However, the
proposed ARP method asks for relative similarities amongst patients instead, which
makes active learning on such dataset significantly easier. For example, though it is
difficult to judge a person’s mental health condition based on MRI images, doctors can
confidently provide the relative similarities amongst patient by visually comparing the
similarities and differences between the MRI images. To collect the relative similarities
amongst patients, we create a web user interface for doctors, as shown in Fig. 6, to input
their feedbacks. Note that the relative similarities of patients used in our experiment
are provided by real brain specialists and neuroscientists.
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4.2.2 Results and discussion

For both FLAIR and GRAY MRI images, we in each random trial equally divide the
1,005 patients into three groups. Patients in one group are used for the training, and the
remaining patients are used in the test. The training group rotates until every group of
patients being used as the training set once. To evaluate the performance improvement
of patient risk prediction as the number of active queries increases, we gradually add
30 additional labels or relative similarities (depending on the method used) of patients
to the training data. The experiments are repeated for 100 times. The mean error rates
along with the standard deviations are reported in Fig. 7, where the result on Breast
Cancer dataset is shown in Fig. 4a and Diabetes dataset is shown in Fig. 4b, where
Fig. 7a shows the result on FLAIR type of MRI images and Fig. 7b shows the result
on GRAY type of MRI images.

Observing the result, we see that the performance of the two random querying
methods, i.e. Random+Risk and Random+Relative, are very weak as they do
not improve the learning accuracy and sometimes are even destructive. From the
results we can observe that the connectivity is definitely a better weighting scheme
for our ARP approach compared to the uniform weighting scheme. It also can be
seen that in this experiment there are two methods using our query selection scheme,
ARP-connectivity and Active+Risk, both of which significantly outperform
the Active Harmonic Function. This demonstrates the effectiveness of our
counting set cover strategy. Surprisingly, the performance of ARP-connectivity
is not just comparable to the label focused active learning methods, but even performs
better. We investigate into this, and find this is caused by the complexity of the medical
data. The MRI images are complex objects, therefore, for a risk prediction model it
is difficult to understand the images directly from the features, which in turns make
the correct construction of neighborhood structure difficult. Hence, in this application
providing a few additional labeled patients may not improve the prediction model
much, but providing a few key neighborhood orderings (relative similarities) would

Fig. 7 Performance evaluation on MRI scans (standard deviation is marked by shade). a Error rate on
FLAIR scans, b error rate on GRAY scans
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Table 3 Hit-rate comparison on
the two types of MRI images

Type of MRI image Hit-rate of ARP Hit-rate of random query

FLAIR 100 % 87.33 %

GRAY 100 % 86.60 %

significantly enhance the graph structure and better propagate the risks on the graph
of patients. This confirms the advantage of querying relative similarities, and implies
that the proposed ARP model is more suitable for the learning problems involving
complicated objects or high dimensional data.

In Table 3, we see that for FLAIR type of MRI scans the hit-rate of the ARPmethod
is 100 %, while the Random+Relative method only reaches a hit-rate of 87.33 %;
for GRAY type of MRI scans the hit-rate of ARP is also 100 %, while the random
selection being only 86.60 %. From the result, we see that same as our ARP model,
the baseline method Random+Relative also makes changes to the risk prediction
model by modifying the patient similarity matrix S. However, the changes of graph
structure made by theRandom+Relativemethod are not comparable to the changes
made by our ARPmethod, and are not helpful to the risk prediction performance. This
implies that the random query selection may not improve the learning performance,
which confirms the demand for the proposed query selection scheme.

4.3 Experiment 3—prediction of congestive heart failure

4.3.1 Dataset and experiment settings

We used a real-world EHR (Electronic Health Record) data warehouse including
the records of 319,650 patients over 4 years. We selected Congestive Heart Failure
(CHF) patients as a study case and predicted their risk of CHF onset. We defined CHF
diagnosis using the following criteria (Wu et al. 2010): (i) International Classification
of Diseases - Version 9 (ICD-9) diagnosis codes of heart failure appeared in the EHR
at least twice, indicating consistency in clinical assessment; (ii) at least one CHF-
related drug prescription. The diagnosis date of a confirmed CHF patient was defined
as the first occurrence of the heart failure related diagnosis code. With this criteria,
we extracted from the database 1,127 CHF case patients. Following the case-control
match strategy in (Wu et al. 2010), a primary care patient was eligible as a control
patient if he did not meet the CHF diagnosis criteria and had the same PCP as the
case patient. Approximately ten eligible clinic-, gender-, and age-matched (in 5-year
age intervals) controls were selected for each heart failure case. In situations where
ten matches were not available, all available matches were selected. Following this
strategy, we obtained CHF 3,850 control patients, which means each case patient was
matched with three controls on average.

For all case and control patients we extracted their Hierarchical Condition Cat-
egories (HCC) codes from the EHR database as medical features. HCC codes are
higher-level categorization of patients’ diagnosis and it is correlated to the more
detailed ICD-9 codes. We only considered the medical records that occurred from
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540 days prior to the diagnosis date till 180 days prior to the diagnosis date. In other
words, we used about a year worth of data to make prediction at least half a year before
the disease onset. Patients who had insufficient amount of records were not included.
For control patients, we set the last day of their available records as the diagnosis
date and followed the same rule. In total there were 186 unique HCC codes for all the
4,977 patients. The medical records were encoded in a binary 4, 977×186 matrix. The
(i, j)-th entry was set to 1 if HCC code j was observed on patient i , and 0 otherwise.
In total 65,467 medical records were considered, which indicates our input data was
extremely sparse (7% nonzero entries).

Predicting Congestive Heart Failure (CHF) of patients based on the HCC codes is
difficult, however, the proposedARPmethod makes active learning techniques applica-
ble to such difficult learning tasks, since it asks for easier relative questions instead of
the absolute questions used in typical active learning. For example, though it is diffi-
cult to tell if a patient will suffer from CHF or not, doctors can confidently provide the
relative similarities of patients by comparing their HCC codes. To collect the relative
similarities for our evaluation, we also create a web user interface for doctors, just like
we did in the Alzheimer’s Disease experiment. Note that the relative similarities of
patients used in this experiment are provided by real experienced doctors.

4.3.2 Results and discussion

In this experiment, we in each random trial equally divide the nearly 5,000 patients
into 3 groups. One of the three groups is for the training, while all the remaining
patients are used for the testing. We then rotate the group being the training set until
all groups of patients are covered. To simulate the scenarios that different numbers of
active queries have been performed, we add 150 additional labeled patients or relative
similarities (depends on the method) to the training data one-by-one. The experiment is
repeated for 50 times. The mean error rates with their standard deviations are reported
in Fig. 8, where the mean error rate is shown in bold curve and the standard deviation
is presented by shaded borderline.

From the result shown in Fig. 8, we can sort the overall performance of the six
methods in the descending order as follows: (1) Active+Risk � (2) Active
Harmonic Function � (3) ARP-Connectivity � (4) ARP-Uniform �
(5) Random+Risk � (6) Random+Relative. From the observation we see that
Active+Risk outperforms ARP-Connectivity and Random+Risk outper-
forms Random+Relative, which indicates that in risk prediction problems label is
a stronger type of supervision than relative similarity, since the only difference in both
the two pairs of methods is the supervision. It can be observed that the best performance
is achieved by the two label focused active learning methods, i.e. Active+Risk
and Active Harmonic Function, which is in line with our expectation. How-
ever, it is important to note that in this setting the two label focused methods assume
that the medical experts being able to provide perfect labels of patients based on the
HCC codes, which may not be realistic in practice. Thus their performance can be
viewed as the upper bound in this experiment. We see that the two ARP variants, i.e.
ARP-Connectivity and ARP-Uniform, achieve comparable performance to the
two label focused methods, though there is no additional label added, but rather the
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Fig. 8 Performance evaluation
on EHR dataset (standard
deviation is marked by shade)

relative similarities. This shown the effectiveness of our ARP method. In addition, we
can see that the connectivity is a better weighting scheme for the counting set cover
strategy. The result also shows that the methods using randomly selected queries do
not noticeably improve the accuracy of patient risk prediction, though there are 150
labels or relative similarities added to the training data. This motivates the need for
active query selection, since additional training data does not necessarily improve the
prediction accuracy.

5 Conclusion

In this paper we present an interactive system to predict the patient risks of suffering
from certain diseases, and propose an active learning method that queries the relative
similarities of patients. The proposed relative queries take the form of, “Is patient
i or patient j more similar to patient k?”. This relative type of questions is easier
being answered by medical experts, which in turns make active learning methods
more applicable to difficult medical problems or the medical learning tasks involv-
ing complex features (such as MRI images). The proposed ARP method is easy to
implement, and can be scaled to solve large healthcare learning problems using par-
allel/distributed computing. The surprising empirical results on real-world medical
problems demonstrate the usefulness of our ARP method, as querying for the relative
similarities of patients can achieve comparable and in some cases even better predic-
tion performance than querying absolute questions on patients, while the latter type
of questions is significantly more difficult to answer. It is important to note that the
ARP method makes active learning on difficult medical problems possible, e.g. the
prediction of Alzheimer’s disease and congestive heart failure, where the traditional
active learning approach cannot be applied. This is significant since active learning
is especially needed in difficult medical learning tasks, and our work is a first step
towards this goal.
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