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ABSTRACT
Videos contain very rich semantics and are intrinsically mul-
timodal. In this paper, we study the challenging task of clas-
sifying videos according to their high-level semantics such
as human actions or complex events. Although extensive
efforts have been paid to study this problem, most exist-
ing works combined multiple features using simple fusion
strategies and neglected the exploration of inter-class seman-
tic relationships. In this paper, we propose a novel unified
framework that jointly learns feature relationships and ex-
ploits the class relationships for improved video classification
performance. Specifically, these two types of relationships
are learned and utilized by rigorously imposing regulariza-
tions in a deep neural network (DNN). Such a regularized
DNN can be efficiently launched using a GPU implemen-
tation with an affordable training cost. Through arming
the DNN with better capability of exploring both the inter-
feature and the inter-class relationships, the proposed regu-
larized DNN is more suitable for identifying video semantics.
With extensive experimental evaluations, we demonstrate
that the proposed framework exhibits superior performance
over several state-of-the-art approaches. On the well-known
Hollywood2 and Columbia Consumer Video benchmarks, we
obtain to-date the best reported results: 65.7% and 70.6%
respectively in terms of mean average precision.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods

Keywords
Multimodal Features; Class Relationships; Deep Neural Net-
works; Action and Event Recognition

1. INTRODUCTION
Techniques for recognizing high-level semantics in diverse

unconstrained videos can be deployed in many applications,
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such as Web video search and video surveillance systems.
However, it is well-known that recognizing or classifying the
video semantics is an extremely challenging task due to var-
ious factors, such as the semantic gap between low-level
video features and the complex semantics. While signifi-
cant progress has been made in recent years, most state-of-
the-art solutions often utilized a large set of features with
simple fusion strategies to model high-level video seman-
tics. For instance, two popular ways of combining multiple
video features are early fusion and late fusion [41]. Early
fusion concatenates all the feature vectors into a long rep-
resentation for model training and testing, while late fusion
trains a model using each feature separately and combines
the outputs of all the models. Both methods do not have
the capability of explicitly modeling the correlations among
the video features, which can be exploited for deriving better
representations. In addition, the existing video classification
methods often neglected the inter-class relationships among
video semantics. Note that such semantic correlations can
be exploited to boost the classification performance since
knowing the presence of one class may help predict other
correlated semantics contained in the same video. Although
there exist a few works investigating multi-feature fusion or
exploring the inter-class relationships, as will be discussed
in the next section, they mostly addressed the two problems
separately. Also, many existing methods are computation-
ally expensive; thus, they are less feasible for large scale
applications.

Realizing the limitations of the existing works, in this pa-
per, we propose a unified framework based on deep neu-
ral network (DNN), which jointly learns feature relation-
ships and class relationships, and simultaneously carries out
video classification within the same framework utilizing the
learned relationships. Figure 1 gives a conceptual diagram
of the proposed approach. First, we extract various video
features including local visual descriptors and audio descrip-
tors. The features are then used as the inputs of a DNN,
where the first two layers are input layer and feature trans-
formation layer. The third layer of the network is called
fusion layer, where structural regularization is imposed on
the network weights to identify and utilize the feature rela-
tionships. Specifically, the regularization terms are designed
based on the observation of two natural properties of the
inter-feature relationships, correlation and diversity. The
former means that different features may share some com-
mon patterns in a middle level representation lying between
the original features and the high-level semantics. The latter
emphasizes the unique characteristics of different features,
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Figure 1: Overview of the proposed DNN-based video classification framework. Various visual/audio features
are first extracted and then used as inputs of a DNN. The features are transformed (abstracted) using one
layer of neurons before fusion. On the fusion layer, regularization on the network parameters is imposed to
ensure that different features can share correlated dimensions while preserving their unique characteristics.
As indicated by line width in the figure, some dimensions of different features may be highly correlated (the
thick lines pointing to the same neuron). After that, the weights between the fusion and the output layer
are also regularized to identify groups of classes. Both the learned inter-feature and inter-class relationships
are utilized for improved classification performance.

which serve as complementary information for predicting the
video semantics. Through modeling these two properties
using a feature correlation matrix, we impose a trace-norm
regularization over the fusion weights to reveal the hidden
correlation and diversity of the features.

For the inter-class relationships, we impose regularizations
on the weights of the final output layer to automatically
identify the grouping structures of video classes, as well as
the outlier classes. Semantic classes within the same group
share commonalities or correlations that can be utilized as
knowledge sharing for improved classification performance,
while the outlier classes should be excluded from negative
knowledge sharing. We will show that by imposing a similar
trace-norm based regularization on the weights of the out-
put layer, we are able to explore such complex inter-class
relationships effectively to produce better video classifica-
tion results. Therefore, this allows us to develop a unified
framework using a regularized DNN, which can be easily
implemented using a GPU with affordable training cost.

Notice that it is feasible to use raw video data as inputs
instead of the hand-crafted features like the recent works on
image classification using deep learning [22]. In this case, the
convolutional neural network (CNN) can be adopted for per-
forming feature extraction from the raw data. The reasons of
using the hand-crafted features in our proposed framework
are two-folds. First, the hand-crafted features are widely
used in video classification and remain the central compo-
nents of some video analytical systems that generated recent
state-of-the-art results on tasks like human action recogni-
tion [46] and event recognition [1, 23]. By using these fea-
tures it is easy to make fair comparisons with the traditional
semantic classification approaches such as the popular SVM
classifiers. Second, extracting features using neural networks
needs more layers of neurons that incur a significant number
of additional parameters to be tuned, requiring much more
training data. Note that in many video classification tasks,

the amount of available training data is far less from suf-
ficient for training a neural network with too many layers.
Therefore, in this paper, we focus the proposed regularized
DNN on the tasks of feature fusion and video semantic clas-
sification.

To the best of our knowledge, this work represents the
first attempt to capture both the feature and the class re-
lationships in a DNN for video classification. Our major
contributions are summarized as follows:

1. We propose to impose structural regularization on the
fusion layer in a DNN to identify the correlations of
multiple features, while still maintaining their diversi-
ties. This unique capacity distinguishes the proposed
method from most of the existing works that often
adopted shallow fusion process without considering the
deep exploration of the feature correlations.

2. We also propose to explore inter-class relationships
through imposing a similar structure regularization on
output layer of the DNN. Therefore, both the inter-
feature and the inter-class relationships are formulated
and explored in a unified framework, which can be eas-
ily implemented with a GPU and trained with an af-
fordable time cost.

3. Extensive empirical evaluations are provided to cor-
roborate the effectiveness of the proposed framework
in detail, and we attained to-date the highest perfor-
mance on the widely used real-world benchmarks.

The remaining sections of this paper are organized as fol-
lows. Section 2 discusses related works. Section 3 elabo-
rates the proposed framework, including both formulation
and optimization. Extensive experimental results and com-
parisons with alternative methods and the state of the arts
are reported and discussed in Section 4. Finally, Section 5
concludes this paper.



2. RELATED WORK
Extensive studies have been conducted in the field of video

classification, and typical approaches often combined several
multiple features in a standard machine learning pipeline
using classifiers like the SVM. Most of the existing work
focused on developing effective features [10, 24, 46], novel
recognition methods [29, 39], or comprehensive systems that
integrate multiple features and classifiers for competitive
classification performance [23, 30]. Besides accuracy, effi-
ciency is another important factor that should be consid-
ered in the design of a modern video classification system.
Several recent studies focused on this issue by using efficient
classification methods [27] or parallel computing [49].

In the following we focus our discussion on works inves-
tigating multi-feature fusion, and on those exploring inter-
class relationships, which are more relevant to this paper.

2.1 Fusing Multiple Features
As aforementioned, there exist two popular fusion strate-

gies, known as early fusion and late fusion. Although both
strategies are not able to explore hidden feature relation-
ships such as the correlations between features, they are
widely used in many state-of-the-art systems due to the sim-
plicity [1]. In addition, both of them require to design fu-
sion weights that indicate the importance of each individual
feature. The weights can be set as equal using heuristics
(a.k.a. average fusion), or learned using the cross validation
method. Some other works also employed multiple kernel
learning (MKL) [5] to estimate the fusion weights [7, 31],
which may lead to performance gain that is nevertheless of-
ten observed to be insignificant [45].

More recently, several advanced feature fusion approaches
have been proposed. In [50], an optimization framework was
used for robust late fusion to derive better combination of
multiple feature modalities. It seeks a shared low-rank ma-
trix to remove noises of certain modalities, which requires to
iteratively compute singular value decomposition with a cu-
bic time complexity, and thus is less scalable for large scale
real-world applications. In a following up work by Liu et al.
[25], dynamic fusion was adopted to find the best feature
combination for each sample. This approach was proved ef-
fective but is extremely time-consuming. In [17], Jiang et al.
proposed to construct an audio-visual joint codebook based
on the discovered correlations between audio and visual fea-
tures for video concept classification. The approach pointed
out a promising direction as this is among the first works
performing deep mining of feature correlations. However,
the used visual features were computed on each segmented
patches from video frames, which is computationally pro-
hibitive for most real-word scenarios. The approach was
further enhanced in [18], where the temporal interaction of
audio-visual features was investigated. Jhuo et al. [16] im-
proved the speed of training the audio-visual joint codebook
by using standard local visual features like the SIFT, instead
of the segmentation-based region features.

There are also a few studies on combining multiple fea-
tures in neural networks, which are closely related to our
work. A deep denoised auto-encoder was adopted to learn a
shared representation from mutimodal inputs [32], and sim-
ilarly, a deep Boltzmann machine was utilized to fuse visual
and textual features [42]. However, both methods integrated
multiple features without elaborately considering the feature
correlation and diversity. One important message delivered

in this paper is that regularized fusion of multiple features
is intuitively reasonable and empirically effective, compared
with those “free” forms of fusion approaches.

2.2 Exploring Inter-class Relationships
There are many existing works on exploring class rela-

tionships, often called context, for improved classification
performance. In [44], Torralba et al. highlighted the impor-
tance of context in object detection. In [6, 37], co-occurrence
context was utilized to enforce object recognition in images.
For video classification, Qi et al. [36] proposed to use a multi-
label learning method based on ideas from the Gibbs random
field. Jiang et al. [19] proposed a semantic diffusion method
to utilize class-relationships for video annotation. The al-
gorithm is also capable of adapting the pre-defined class re-
lationships to a new test data domain. Weng et al. [47]
proposed a domain-adaptive method that not only explored
the class relationships, but also utilized temporal structural
information in long broadcast news videos for better anno-
tation performance. Most of these approaches, however, are
largely based on the co-occurrence statistics of the video
classes, and cannot be used in the cases where the classes
share commonalities but do not explicitly co-occur. Our
approach can automatically learn such commonalities via a
regularized DNN using a rigorous formulation.

The regularization terms used in our approach are partly
motivated by recent advances in Multiple Task Learning
(MTL) [14, 52]. MTL trains multiple models simultaneously
and improves the performance of a task (classifier) with the
help of other related tasks. Recent years have witnessed
practical successes of MTL in many applications, such as
disease prediction [51, 53] and financial stock selection [13].
Sharing commonalities between different tasks is the cen-
tral idea of MTL and several approaches have been devel-
oped with regularizations on shared common patterns across
classes [9, 21, 35]. These works considered the class relation-
ships in classification or regression tasks with conventional
shallow learning models, but never injected similar regular-
izations into neural networks.

In fact, multi-layered neural network can be considered as
one of the earliest MTL models [8] (see Figure 2 (b)). In
such a neural network, each unit in the output layer corre-
sponds to a task and the hidden layer neurons can be re-
garded as shared common patterns. In this paper, we argue
that imposing explicit forms of regularization ensures the
deep modeling of complex class relationships for video clas-
sification, and thus generates better performance than the
traditional neural network with implicit task sharing.

3. METHODOLOGY
This section elaborates our proposed method. We start

from introducing the notations and the problem setup. Then
a brief introduction of standard DNN is given to support
later discussions.

3.1 Notations and Problem Setup
Assume that we are given a training set with N video

clips, which are associated with C semantic classes. Here
each video clip is represented by M different features, such
as various visual and audio descriptors. Therefore, we can
denote each training sample as an (M + 1)-tuple:

(x1
n, · · · ,xm

n , · · · ,xM
n ,yn), n = 1, · · · , N,
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Figure 2: Illustration of different neural network structures. (b) is the most popular structure for multi-class
prediction, while (d) was used in works like [42] to combine multiple features, where features are processed
separately in the network and then merged through a middle layer. In this paper, we impose regularizations
on the same structure as shown in (d) to explore both the inter-feature and the inter-class relationships.

where xm
n represents the m-th feature representation of the

n-th video sample, and yn = [yn1 · · · ync · · · ynC ]> ∈ RC

is the corresponding semantic label with the c-th element
ync = 1 if the n-th video sample is associated with the c-
th semantic class. The goal is to train prediction models
that can classify new test videos. A straightforward way is
to independently train one classifier for each semantic class,
and different features can be combined using either the early
fusion or the late fusion scheme. However, such an indepen-
dent training strategy does not explore the inter-feature as
well as the inter-class relationships. Here, we propose a DNN
based video classification model that carries out feature shar-
ing in the fusion layer through exploring the correlation and
diversity of multiple features, as shown in Figure 1. In ad-
dition, the prediction layer of our deep neural network is
also regularized to enforce knowledge sharing across differ-
ent classes. Hence, both kinds of relationships are explicitly
explored in a uniform learning process. Below we first in-
troduce the standard DNN with a single feature and then
present the details of our proposed regularized DNN.

3.2 DNN Learning with Single Feature
Inspired by the biological nervous systems, DNN uses a

large number of interconnected neurons to construct com-
plex computational models. Through organizing the neurons
in multiple layers, this method possesses strong non-linear
abstraction capacity and is able to learn arbitrary mapping
functions from inputs to outputs as long as being given suf-
ficient training data. Below we briefly review a standard
DNN with only one feature as the input, i.e., M = 1.

In a DNN with a total of L layers, we denote al−1 and
al as the input and the output of the l-th layer for a single
feature, l = 1, · · · , L, while Wl and bl refer to the weight
matrix and the bias vector of the l-th layer, respectively.
The transition function from the (l − 1)-th layer to the l-th
layer can be formulated as:

al =

{
σ (Wl−1al−1 + bl−1) , l > 1;
x, l = 1.

(1)

Here σ(·) is a nonlinear sigmoid function, which is often
defined as

σ(x) =
1

1 + e−x
.

Figure 2 (a) and (b) show two types of four-layered neural
networks using a single feature as the input.

To derive the optimal weights for each layer, one can for-
mulate the following optimization problem:

min
W

N∑
i=1

`(f(xi),yi) +
λ1

2

L−1∑
l=1

‖Wl‖2F , (2)

where the first part measures the empirical loss on the train-
ing data by summing the discrepancy between the outputs
of the network ŷi = aL = f(xi) and the ground-truth labels
yi, and the second part is a regularization term preventing
overfitting. For simplicity, we can absorb b into the weights
coefficient W by adding an additional dimension to the fea-
ture vectors with a constant value one.

3.3 Regularization on Feature Relationships
A single feature based DNN can be powerful in some cases.

However, it can only be used with a single aspect of the data
to perform semantic prediction. For complex data like the
videos, the semantic information can be carried by differ-
ent feature representations including both visual and audio
clues. Note that simple fusion strategies, such as the early
or late fusion, usually result in limited performance gain
since the intrinsic relations among multiple feature represen-
tations are overlooked [4]. In addition, such simple fusion
methods often incur extra efforts for training the classifiers.
Therefore, it is desired to obtain a compact yet meaningful
fused representation that fully leverages the complementary
clues from various features. Below we extend the basic DNN
to a regularized variant that is able to accommodate the
deep fusion process of multiple features.

We are given a total of M features

{x1
i , · · · ,xm

i , · · · ,xM
n }, i = 1, · · · , n

for each video sample. Motivated by the multisensory inte-
gration process of primary neurons in biological systems [33,



43], we propose to use one additional layer for the fusion of
all the features, as shown in Figure 1. Accordingly, the
transition equation for this fusion layer can be written as
the following:

aF = σ

(
M∑

m=1

Wm
E am

E + bE

)
, (3)

where E and F are the indices of the last layer of feature
extraction and the fusion layer respectively (i.e., F = E+1).
Here am

E ∈ RP denotes the extracted mid-level representa-
tion for the m-th feature which is first linearly transformed
by the weight Wm

E and then non-linearly mapped to the new
representation aF using a sigmoid function.

Since all the feature representations correspond to the
same video data, it is easy to understand that various fea-
tures can be used to reveal the common latent patterns re-
lated to the video semantics. In addition, as mentioned ear-
lier, different features could also be complementary because
they have distinct characteristics. Therefore, the fusion pro-
cess should aim to capture the relations among the features,
while being able to reserve their unique characteristics at
the same time. Instead of simply adding up multiple feature
information, we specifically formulate an objective function
that can regularize the fusion process to explore such cor-
relations and diversity among the multiple features simul-
taneously. In particular, the weights, W1

E , · · · ,WM
E , which

transform all features into a shared representation, are first
vectorized into P dimensional vectors separately, where P
is the product of the am

E ’s (m = 1, · · · ,M) dimension and
the aF ’s dimension. Here, we assume the extracted features
are of the same dimension. Then we stack these coefficient
vectors into a matrix WE ∈ RP×M , where each column of
WE corresponds to the weights of a single feature. Hence,
the element WE(i, j) is given as

WE(i, j) = Wi
E(j), i = 1, · · · ,M, j = 1, · · · , P.

Then we can formulate the following objective to design a
regularized DNN:

min
W,Ψ

L+
λ1

2

(
E∑
l=1

M∑
m=1

‖Wm
l ‖2F +

L−1∑
l=F

‖Wl‖2F

)

+
λ2

2
tr(WEΨ−1WT

E)

s.t. Ψ � 0,

(4)

where L =
∑N

i=1 `(ŷi,yi). Compared with the objective
function in Equation 2 for the standard single feature neu-
ral network, the above cost function includes one additional
regularization term. Note that the matrix WE represents
the coefficients over all the features. Here we use a symmet-
ric and positive semidefinite matrix Ψ ∈ RM×M to model
the inter-feature correlation and introduce the last regular-
ization term with the trace norm that can help learn the
inter-feature relationship [12, 52]. Note that the entries
with large values in Ψ indicate strong feature correlations,
while small-valued entries denote the diversity among differ-
ent features since they are less correlated. The coefficients
λ1 and λ2 control the contributions from different regulariza-
tion terms. Finally, the objective of learning the regularized
DNN is performed as a joint optimization procedure over
the weight matrix W and the feature correlation matrix Ψ.

3.4 Regularization on Class Relationships
To recognize or classify C semantic categories, one can

simply adopt the one-vs-all strategy to independently train
C classifiers. Figure 2 (a) and (c) illustrate this one-vs-all
training scheme with a total of C four-layered neural net-
works for the single-feature and multi-feature settings, re-
spectively. Clearly, each of these C neural networks is sep-
arately learned, where knowledge sharing among different
semantic categories is completely neglected. However, it is
well recognized that video semantics also share some com-
monality, which indicates that certain semantic categories
could be strongly correlated [19, 36]. Therefore, it is criti-
cal to explore such a commonality by simultaneously learn-
ing multiple video semantics, which can often lead to better
learning performance. Note that, the commonality among
multiple classes is often represented by the parameter shar-
ing among different prediction models [3, 26]. Compared
with the popular SVM method, it is more natural for DNN
to perform multi-class training simultaneously. As shown
in Figure 2 (b), by adopting a set of C units in the output
layer, a single-feature based DNN can be easily extended
to multi-class problems, and this structure has been widely
adopted. Motivated by the regularization framework used in
the standard MTL methods [3, 26], here we present a regu-
larized DNN that aims at training multiple classifiers simul-
taneously with deeper exploration of the class relationships.
To enforce the semantic sharing, we extend the original ob-
jective for a standard DNN to the following form:

min
W,Ω

N∑
i=1

`(f(xi),yi) +
λ1

2

L−1∑
l=1

‖Wl‖2F

+ λ2tr(WL−1Ω
−1WT

L−1).

s.t. Ω � 0.

(5)

Note that some previous MTL works assumed that the class
relationships are explicitly given and are ready for use as
prior knowledge [26], while our method does not require
this. Following the convex formulation of MTL [52], here
we impose a trace norm regularization term over the coeffi-
cients WL−1 of the output layer with the class relationships
augmented as a matrix variable Ω ∈ RC×C . Note that the
constraint Ω � 0 indicates that the class relationship matrix
is positive semidefinite since it can be viewed as the similar-
ity measure of the semantic classes. The coefficients λ1 and
λ2 are regularization parameters. During the learning pro-
cedure, the optimal weight matrices {Wl}Ll=1 and the class
relationship matrix Ω are simultaneously derived.

3.5 The Unified Objective
To unify the above objectives into a joint framework, we

now present a novel DNN formulation that explores both the
inter-feature and the inter-class relationships. In our frame-
work, we use one layer of neurons to fuse multiple features,
where the objective is to bridge the gap between low-level
features and the high-level video semantics. In the final layer
of generating the predictions, we impose a trace norm regu-
larization among different semantics to better learn the pre-
dictions of multiple classes. Mathematically, we incorporate
the feature regularization in Equation 4 and the class regu-



larization in Equation 5 into the following objective function:

min
W,Ψ,Ω

L+
λ1

2

(
E∑
l=1

M∑
m=1

‖Wm
l ‖2F +

L−1∑
l=F

‖Wl‖2F

)

+
λ2

2
tr(WEΨ−1WT

E)

+
λ3

2
tr(WL−1Ω

−1WT
L−1),

s.t. Ψ � 0 tr(Ψ) = 1,

Ω � 0 tr(Ω) = 1,

(6)

where λ1, λ2, and λ3 are regularization parameters. Com-
pared with the original objective in Equation 2, we have two
trace-norm regularization terms that are tailored for the fu-
sion of multiple features and the exploration of the inter-
class relationships, respectively. Two additional constraints
tr(Ψ) = 1 and tr(Ω) = 1 are used to restrict the complex-
ity, as suggested in [52]. Finally, the above cost function
is minimized with respect to the network weights {Wl}Ll=1,
the inter-feature relationship matrix Ψ, and the inter-class
correlation matrix Ω.

3.6 Optimization
Among the variables in the minimization problem of Equa-

tion 6, two pairs of variables, i.e., (WE ,Ψ) and (WL−1,Ω),
are coupled with each other. Therefore, we adopt the al-
ternative optimization method to iteratively minimize the
objective with respect to Wm

l (l = 1, · · ·L,m = 1, · · · ,M),
Ψ, and Ω.

By fixing both Ψ and Ω, we first consider the minimiza-
tion problem over Wm

l , which is degenerated to a set of
unconstrained univariate optimization problems:

min
Wm

l

L+
λ1

2

(
E∑
l=1

M∑
m=1

‖Wm
l ‖2F +

L−1∑
l=F

‖Wl‖2F

)

+
λ2

2
tr(WEΨ−1WT

E) +
λ3

2
tr(WL−1Ω

−1WT
L−1).

(7)

As all the terms of the above objective function are smooth,
the gradient can be easily evaluated. Denote Gm

l as the
gradient with respect to Wm

l , the weight matrix for the l-th
layer and the m-th feature is updated as:

Wm
l = Wm

l − ηGm
l , (8)

where η is the step length of the gradient descent.
We then introduce the solution of minimizing the objec-

tive function over Ψ with other variables being fixed. The
problem in Equation 6 degenerates to:

min
Ψ

tr(WEΨ−1WT
E),

s.t. Ψ � 0 tr(Ψ) = 1.
(9)

Adopting the Cauchy-Schwarz inequality, we obtain the an-
alytical solution for the above minimization problem as:

Ψ =
(WT

EWE)
1
2

tr((WT
EWE)

1
2 )
. (10)

Similarly, the optimal solution for Ω is derived as:

Ω =
(WT

L−1WL−1)
1
2

tr((WT
L−1WL−1)

1
2 )
. (11)

Algorithm 1 Training Procedure of Regularized DNN

Require: xm
n : the representation of the m-th feature for the n-

th video sample; yn: the semantic label of the n-th video
sample;

1: Initialize Wm
l randomly, Ψ = 1

M
IM and Ω = 1

C
IC , where

IM and IC are identity matrices;
2: for epoch = 1 to K do
3: Back propagate the prediction error from layer L to layer

1 by evaluating the gradient Gm
l , and update the weight

matrix Wm
l for each layer and each feature as:

Wm
l = Wm

l − ηGm
l ;

4: Update the feature relationship matrix Ψ according to
Equation 10:

Ψ =
(WT

EWE)
1
2

tr((WT
EWE)

1
2 )

;

5: Update the class relationship matrix Ψ according to Equa-
tion 11:

Ω =
(WT

L−1WL−1)
1
2

tr((WT
L−1WL−1)

1
2 )
.

6: end for

Note that Zhang et al. adopted a similar solution as in Equa-
tion 11 to identify task correlations for a linear kernel based
regression and classification task [52]. However, our method
integrates more complex structural regularizations in a neu-
ral network architecture, where both the inter-feature and
the inter-class relationships are explored for a completely
different application. Hence, the difference of our method is
fairly significant.

In our approach, the inter-feature and inter-class relation-
ships are first estimated based on the corresponding weights
in the neural networks. The relationships are then used in
turn to adjust the network weights for improved classifica-
tion performance. Using the trace norm allows us to de-
rive the analytical solution in Equation 10 and Equation 11,
which satisfies our goal of learning the relationships Ψ and
Ω based on W. More specifically, the training procedure
of the proposed method is summarized in Algorithm 1. For
each epoch, additional efforts are required to compute the
gradient matrix Gm

l for updating Wm
l , as well as to update

the matrices Ω and Ψ. The complexity of calculating the
trace norms is the same as that of the `2 norm. The update
of Ω and Ψ requires operations with a cubic complexity
with respect to the number of features M and the number
of video classes C, respectively. Note that these two num-
bers are often relatively much smaller than the number of
data points used for DNN training. Therefore, the training
cost of the proposed regularized DNN is very similar to that
of a standard DNN. Our empirical study further confirms
the efficiency of our method, as will be discussed in the next
section.

4. EXPERIMENTS

4.1 Experimental Setup

4.1.1 Datasets and Evaluation Measure
We adopt three challenging benchmarks on action and

event recognition to evaluate our method, as described in
the following.



Hollywood2 [24]. The Hollywood2 dataset is one of the
most popular benchmarks on action recognition in videos.
Collected from 69 Hollywood movies, it contains 1,707 action
video clips covering 12 classes: answering phone, driving car,
eating, fighting, getting out of car, hand shaking, hugging,
kissing, running, sitting down, sitting up and standing up.
Following [24], the dataset is split into a training set with
823 videos and a test set with 884 videos.

Columbia Consumer Videos (CCV) [20]. The CCV
dataset is a well-known benchmark on Internet consumer
video analysis. It contains 9,317 videos collected from YouTube
with annotations of 20 semantic classes, including objects
(e.g., “cats”), scenes (e.g., “playground”), and events (e.g.,
“parade”). Since most of the classes are complex events, it
requires a joint use of multiple feature clues like visual and
audio representations to perform better classification. The
dataset is evenly split into a training set and a test set.

CCV+. Since both the Hollywood2 and the CCV datasets
are small in terms of the number of annotated classes, we
additionally collected and annotated another 20 classes with
in total of 5,159 video clips. These clips are merged with the
CCV to form a larger dataset of 40 classes, named CCV+,
containing 7,244 videos for training and 7,232 videos for test-
ing. See Figure 3 for the list of class names and a few ex-
ample frames.

For all the three datasets, the performance is measured by
average precision (AP) for each class and mean AP (mAP)
for overall results of all the classes.

4.1.2 Feature Representations
Visual Features. For the visual features, we consider

the dense trajectory descriptors [46], which have exhibited
strong performance on various benchmark datasets. Briefly,
densely sampled local frame patches are first tracked over
time and four descriptors are then computed for each tra-
jectory: a 30-d trajectory shape descriptor, a 96-d histogram
of oriented gradients (HOG) descriptor, a 108-d histogram
of optical flow (HOF) descriptor, and a 108-d motion bound-
ary histogram (MBH) descriptor. Finally, each descriptor is
quantized into a 4,000-d bag-of-words representation, same
as the settings used in [46].

Audio Features. It is well-known that the audio sound-
tracks contain useful clues for identifying some video seman-
tics. Two types of video features are considered in our study.
The first one is the popular MFCCs (Mel-Frequency Cep-
stral Coefficients), which are computed for every 32ms time-
window with 50% overlap and then quantized into a bag-of-
words representation. The second one is called Spectrogram
SIFT [54]. The 1-d soundtrack of a video is transformed into
a 2-D image based on the constant-Q spectrogram, on which
standard SIFT descriptors are extracted and quantized into
the bag-of-words representation.

Note that all these visual and audio features are adopted
because they have demonstrated strong performance on var-
ious benchmarks; however, evaluating the performance of
each single feature in detail is beyond the scope of this work.
All the representations are normalized with RootSift [2],
which has been shown to be more suitable for histogram-
based features than the conventional L2 normalization.

4.1.3 Compared Approaches
To validate the effectiveness of our method, we compare

with the following approaches:

Early Fusion with Neural Networks (NN-EF). All
the features are concatenated into a long vector and then
used as the input to train a neural network.

Late Fusion with Neural Networks (NN-LF). A sep-
arate neural network is trained using each feature indepen-
dently and then the outputs of all the networks are fused to
obtain the final classification results.

Early Fusion with SVM (SVM-EF). The popular χ2

kernel SVM is adopted and the features are combined on the
kernel level before classification.

Late Fusion with SVM (SVM-LF). A separate SVM
classifier is trained for each feature and prediction results
are then combined.

Multimodal Deep Boltzmann Machines (M-DBM).
It is a fusion model proposed in [42], where multiple feature
representations are used as the inputs of the Deep Boltz-
mann Machines.

Discriminative Model Fusion (DMF) [40]. As one
of the earliest approaches in multimedia for context-based
classification, DMF uses the outputs of an initial classifier,
e.g., a standard DNN in our case, as features to train an
SVM model as the second level classifier for final prediction.

Domain Adaptive Semantic Diffusion (DASD) [19].
This method uses a graph diffusion formulation for context-
based classification. The prediction outputs of a normal
DNN (without the regularizations) are used as inputs of
the DASD in a post-processing refinement step. The ap-
proach also requires input of precomputed class relation-
ships, which are usually estimated based on statistics of la-
bel co-occurrences in training data.

The first five approaches can be regarded as alternatives
for feature fusion, while the last two approaches focus on the
use of the class relationships. All the neural network based
experiments are conducted on a single Nvidia Telsa K20 5GB
GPU with MATLAB Parallel Computing Toolbox, which
speeds up the training procedure by about 5 times than a
decent Intel XEON CPU with 16 cores.

4.2 Results and Analysis
In this section, we first report results of our approach by

disabling the regularizations on the output layer and the
fusion layer respectively, in order to understand the contri-
butions of only exploring the inter-feature or the inter-class
relationships. This also ensures fair comparisons with the
competing approaches. After that, we report results of us-
ing the entire framework, compare with recent state-of-the-
art results, and analyze the effect of the number of training
samples. Finally, we provide discussions on computational
efficiency.

Throughout the experiments, we set the learning rate of
the neural networks to 0.7, fix λ1 to 3 × 10−5 in order to
prevent overfitting, and tune λ2 and λ3 in the same range
as λ1. Following the conventional settings of DNN, we also
adopt the mini batch gradient descent with the batch size
being 70.

4.2.1 Effect of Exploring Feature Relationships
We first report results by only using fusion layer regu-

larization on the DNN with the output layer regularization
being disabled. Table 1 compares our approach, namely
DNN-Fusion Regularization (DNN-FR), with the alterna-
tive feature fusion methods. As seen in the table, our ap-
proach achieves the best performance with clear gains over



Approaches Hollywood2 CCV CCV+

NN-EF 62.0% 66.7% 70.5%
NN-LF 58.5% 61.9% 64.7%

SVM-EF 62.6% 67.5% 70.0%
SVM-LF 62.1% 64.9% 68.5%

M-DBM[42] 61.5% 67.2% 70.1%

DNN-FR 64.5% 69.1% 71.8%

Table 1: Performance comparison (mAP) on the
three datasets, using approaches that only explore
the inter-feature relationships.

Approaches Hollywood2 CCV CCV+

DMF [40] 61.8% 67.6% 68.5%
DASD [19] 60.9% 66.8% 70.2%

DNN-CR 63.0% 69.3% 72.1%

Table 2: Performance comparison (mAP) on the
three datasets, using approaches that only explore
the inter-class relationships.

all the compared methods. Note that the M-DBM approach
also utilizes a neural network for feature fusion, but in a free
manner without explicitly taking feature relations into the
learning process. These results validate the effectiveness of
imposing the proposed fusion regularization in neural net-
works. Notice that, since these adopted datasets are very
challenging and have been widely used, an absolute perfor-
mance gain of 2% is generally considered as a significant
improvement.

Comparing across the alternative approaches, early fusion
tends to generate better results than late fusion. This obser-
vation is consistent with recent works, where the early fusion
was more popularly used [1]. The neural network based ap-
proaches do not show significant gain over the SVM-based
ones because the amount of training data in video classifica-
tion is limited. With more training samples, the margin is
expected to be significantly larger. In addition, for the con-
tribution of the audio clues, we observed that for the classes
with strong audio clues, such as “answering phone”, adding
audio features clearly improves the performance. On the
contrary, for classes like “sitting down”, using audio features
may slightly degrade the result, which is easy to understand.

4.2.2 Effect of Exploring Class Relationships
Next we analyze the effect of solely imposing the regu-

larization on the classification/output layer to explore the
inter-class relationships, while disabling the regularization
on the fusion layer. We compare our method, named as
DNN-Classification Regularization (DNN-CR), with DMF
and DASD and report the results in Table 2. Clearly, DNN-
CR outperforms these two compared approaches, both of
which use the outputs of the conventional DNN as inputs
for context-based refinement. These results corroborate the
effectiveness of the proposed regularization on the output
layer. Note that the simple DMF is superior than the DASD
because the latter requires pre-computed inter-class relation-
ships, which are normally estimated based on the label co-
occurrences in training data. However, some classes that
share commonalities may not visually co-occur, resulting in
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Figure 3: Class relationships in CCV+ indicated by
the learned matrix Ω. Example video frames of a
few found class groups are shown at the bottom.

a very sparse class relationship matrix that is insufficient
for context-based learning. Several other alternative meth-
ods such as those based on the conditional random field [37]
also rely on the relationship matrix and thus suffer from the
same limitation.

To further show the power of our method in learning the
class relationships, we visualize some results in Figure 3. As
discussed in Section 3, values in the matrix Ω can reflect
the learned correlations among the classes. Hence, we can
adopt spectral clustering on the matrix Ω to group the video
semantics, which are then re-ordered for the ease of visual-
ization. We see that many classes sharing commonalities
are grouped together, which confirms that our method can
reveal the hidden class relationships.

4.2.3 Results of the Entire Framework
We now discuss the results of the entire framework, i.e.,

using regularizations on both the fusion layer and the out-
put layer. In addition, to evaluate the performance using
different amounts of training data, we plot the performance
w.r.t. the number of training samples in Figure 4. Over-
all, substantial performance gains are observed from using
the regularized DNN framework. Using regularizations on
both layers also clearly achieves higher performance than
solely imposing regularization on a single layer (i.e., only
on WE) with clear margins. When there are less train-
ing samples, the improvement of our method is even more
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Figure 4: Performance on the three datasets using
different number of training samples. We plot the
results of DNN without regularization (red), DNN
with regularization only on the fusion layer (black),
and DNN with regularization on both the fusion and
the output layers (blue). Consistent performance
gains are obtained from imposing the proposed reg-
ularizations.

significant. An improvement of around 100% is obtained
on all the three datasets when there are just 10 training
samples per class. This demonstrates that the regularized
DNN requires much less training data to achieve compara-
ble performance to the non-regularized DNN. In addition,
comparing the performance across the three datasets using
all the training samples, the gain from exploring the class
relationships is more significant on CCV+. This is because
CCV+ has more classes and thus contains richer inter-class
relationships that are helpful for classification.

Table 3 further compares our best results (from regulariza-
tion on both layers) with several recently reported results on
the Hollywood2 and the CCV datasets. On Hollywood2, our
proposed method achieves the best mAP of 65.7%, outper-
forming all the recent results [15, 28, 46]. All these works are
based on the dense trajectory features, and they performed
classification using the simple early fusion method. Note
that Wang et al. [46] and Oneata et al. [34] used the Fisher
vector to encode the features, which has been shown to be
more effective than the traditional bag-of-words representa-
tion [38]. However, the dimension of the Fisher vectors is too
high to be used as inputs of the neural networks, since there
is no sufficient training data to tune the numerous parame-
ters. Therefore, we adopt the standard bag-of-words in this
work, and it is very appealing to observe higher performance
than the approaches using the Fisher vectors.

For the CCV dataset, several recent works have focused
on the joint use of multiple audio-visual features. Xu et al.
[48] and Ye et al. [50] adopted late fusion with specially de-
signed methods to remove the noise of individually trained
classifiers, and Jhuo et al. used a joint audio-visual code-
book for classification [16]. Our approach is fundamentally
different from these state-of-the-art methods in its design
and produces significantly higher performance.

4.2.4 Computational Efficiency
Finally, we briefly compare and discuss the computational

efficiency, using the Hollywood2 dataset. The average train-
ing time of each epoch for NN-EF, NN-LF and M-DBM are
presented in Table 4, using a GPU-based implementation as

Hollywood2 mAP CCV mAP

Mathe et al. [28] 61.0% Jiang et al. [20] 59.5%
Jain et al. [15] 62.5% Jhuo et al. [16] 64.0%

Oneata et al. [34] 63.4% Xu et al. [48] 60.3%
Wang et al. [46] 64.3% Ye et al. [50] 64.0%

Regularized DNN 65.7% Regularized DNN 70.6%

Table 3: Comparison with state-of-the-art results
in the literature. Our method (Regularized DNN)
achieves to-date the highest mAP on both the Hol-
lywood2 and the CCV datasets.

Approaches Training Time (s)

NN-EF 1.068±0.021
NN-LF 0.782±0.007

Regularized DNN 0.640±0.002

Table 4: Training time per epoch (seconds) of the
neural network based approaches on the Hollywood2
dataset.

mentioned in Section 4.1.3. Our proposed method is more
efficient than NN-EF and NN-LF as our regularized DNN
contains less parameters to be learned. Specifically, com-
pared with the early fusion, our framework processes the
features separately in the first two layers and thus avoids
the parameters interacting among them. The late fusion
method requires the training of separate networks, which
is also more expensive. Note that we exclude the M-DBM
approach in this comparison, because it requires significant
additional time to pre-train the network for weight initial-
ization. For all the methods, several hundreds of epochs
are normally needed to finish the training process (several
minutes in total). Once the training is done, all these neu-
ral network based methods are extremely fast in terms of
performing predictions on testing videos.

5. CONCLUSION
We have introduced a novel DNN framework that explores

both inter-feature and inter-class relationships to achieve
better classifications on video semantics. By imposing trace-
norm based regularizations on a specially designed fusion
layer and an output layer in the neural network, our method
can learn a fused representation of multiple feature inputs
and utilize the commonalities among the semantic classes
for improved classification performance. Extensive experi-
ments on popular benchmarks of action and event recogni-
tion have shown that our method consistently outperforms
the alternative approaches as well as the recent state-of-the-
art works. In addition, the proposed method is also similar
to even faster than the traditional approaches in terms of the
model training, which is very important for large scale appli-
cations. One important future work is to add the function of
learning feature representations directly from raw video data
in the framework, which would require much more training
data as discussed earlier but may lead to substantial fur-
ther performance improvements. Therefore, it would also
be interesting and valuable if this extension could be done
with an effort of collecting and annotating a larger collection



of videos, like the Image-Net effort for image analysis [11],
which is urgently needed to stimulate the research on large
scale video classification.
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